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We study the dynamics of internal gravity waves excited by parametric instability in a
stably stratified medium, either at the interface between a water and a kerosene layer,
or in brine with a uniform gradient of salinity. The tank has a rectangular section, and
is narrow to favour standing waves with motion in the vertical plane. The fluid
container undergoes vertical oscillations, and the resulting modulation of the apparent
gravity excites the internal waves by parametric instability.

Each internal wave mode is amplified for an excitation frequency close to twice its
natural frequency, when the excitation amplitude is sufficient to overcome viscous
damping (these conditions define an ‘ instability tongue’ in the parameter space
frequency-amplitude). In the interfacial case, each mode is well separated from the
others in frequency, and behaves like a simple pendulum. The case of a continuous
stratification is more complex as different modes have overlapping instability tongues.
In both cases, the growth rates and saturation amplitudes behave as predicted by the
theory of parametric instability for an oscillator. However, complex friction effects are
observed, probably owing to the development of boundary-layer instabilities.

In the uniformly stratified case, the excited standing wave is unstable via a secondary
parametric instability : a wave packet with small wavelength and half the primary wave
frequency develops in the vertical plane. This energy transfer toward a smaller scale
increases the maximum slope of the iso-density surfaces, leading to local turning and
rapid growth of three-dimensional instabilities and wave breaking. These results
illustrate earlier stability analyses and numerical studies. The combined effect of the
primary excitation mechanism and wave breaking leads to a remarkable intermittent
behaviour, with successive phases of growth and decay for the primary wave over long
timescales.

1. Introduction

Parametric instability is a general mechanism of excitation for an oscillator, owing
to a modulation of its natural frequency. The case of a simple pendulum will be briefly
discussed in §3, as an introduction to the subject. The case of surface waves, excited by
a vertical oscillation of the container, has been the subject of considerable interest (e.g.
the review by Miles & Henderson 1990). Each spatial mode behaves like an oscillator,
and the modulation of its natural frequency results from the apparent gravity due to
the container acceleration. While the first observations trace back to Faraday (1831),
the subject has been recently revived as providing examples of pattern formation in
nonlinear systems.

By comparison, internal waves have rarely been considered. Interfacial waves
propagate at the interface between a heavy fluid and an upper, lighter fluid. Their
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dynamics is similar in many respects to surface waves. Their excitation by parametric
instability has been studied theoretically by Sekerzh-Zen’kovitch (1983a) and
experimentally by Kalinichenko (1986) and Kalinichenko, Sekerzh-Zen’kovitch &
Timofeev (1991). We reproduce similar experiments as a reference case in §4, with their
theoretical interpretation.

Our main purpose is to investigate the case of a continuously stratified fluid (§5). The
wave excitation by a modulation of the apparent gravity has been theoretically
considered in this case by Sekerzh-Zen’kovitch (1983b), but not realized previously in
a laboratory experiment. While interfacial waves propagate only horizontally, internal
waves in the uniformly stratified case can propagate at any angle to the horizontal, and
the dispersion relationship is quite different from interfacial waves : the wave frequency
depends on the angle of the wave vector with the horizontal, but not on the wavelength.
Therefore, the parametric instability, which dominantly excites waves at a frequency of
half the excitation frequency, does not select a given wavelength, in contrast to the
interfacial (or free-surface) case. This is an interesting physical property, as instability
processes usually select the most amplified wavelength. Furthermore, this method of
internal wave production does not specify a wave geometry, unlike usual wavemakers.
It is therefore appropriate to generate and investigate random wave fields, and some
internal wave turbulence with universal k−$ energy spectra has been generated with this
method by Benielli & Sommeria (1996). In a different tank geometry, the same
mechanism of wave generation has been used to observe a wave attractor (Maas et al.
1997).

In this context, a careful investigation of internal wave generation by a modulation
of the apparent gravity is useful, and this is the main goal of the present paper. We first
analyse the initial growth of the parametric instability (§5.3), and discuss the problem
of mode selection. The nonlinear saturation of the parametric instability is then
analysed in §5.4. We show that the saturation of the instability is partly due to a phase
shift of the wave with respect to the forcing, as in a usual pendulum. However, a second
mechanism simultaneously occurs, specific to the continuously stratified internal
waves : the primary wave is observed to be unstable, exciting secondary waves by
another form of parametric instability, leading to wave-breaking and turbulence by
subsequent instabilities (§6). As a result of these secondary instabilities, the
parametrically excited primary wave never reaches a steady state, by contrast with the
interfacial case, and intermittence is observed, corresponding to a succession of wave
amplification and decay by breaking.

Such a parametric instability of the primary wave commonly occurs in a continuously
stratified fluid: a secondary wave is excited by the periodic tilt induced by the primary
wave. The secondary wave has a frequency of half the primary wave and a smaller
wavelength. The parametric instability is therefore an important mechanism of energy
transfer from the primary wave to smaller wavelengths. Its linear regime has been
studied by Floquet analysis in the case of a propagating plane wave (Mied 1976;
Drazin 1977; Klostermeyer 1991; Lombard & Riley 1996). The case of a standing wave
has been discussed by McEwan (1971) and McEwan & Robinson (1975). These authors
also performed laboratory experiments showing that the subharmonic instability
initiates small-scale disturbances or ‘ traumata’, leading to local density overturning
and mixing. They reproduced this instability in a uniformly stratified fluid contained
within a cylinder rotating with an oscillating motion, to simulate conditions occurring
locally in an internal wave. Thorpe (1994) observed a parametric instability in a
different configuration, with a primary wave produced in an oscillating tilted tube.

The subharmonic nature of the internal wave instability has been observed in these
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experiments, but the description remained qualitative. A more detailed analysis has
been made possible in direct numerical simulations by Bouruet-Aubertot, Sommeria &
Staquet (1995, 1996). In particular, the instability was shown to organize in a wave
packet, with growth rate in agreement with the linear stability analysis. Subsequent
instabilities rapidly lead to wave breaking, feeding a form of stratified turbulence with
k−$ energy spectra. We observe similar secondary wave packets in the present
experiments (§6), as well as k−$ energy spectra when turbulence has developed (Benielli
& Sommeria 1996).

The parametric instability is a particular form of resonant triad interactions,
occurring in the oceanic thermocline, where internal waves are excited at fairly high
frequency and long wavelengths (by surface waves), and feed a continuous spectrum
of lower frequencies and higher wavenumbers by resonant interactions (e.g. Muller et
al. 1986). This cascade process leads to sporadic wave breaking, with production of
turbulence and mixing. Klostermeyer (1991) argued that parametric instability may be
an important process in the atmospheric thermosphere, explaining, for instance, the
acoustic double peaks commonly found in high-frequency Doppler spectra near
thunderstorms.

Therefore, parametric instabilities seem ubiquitous in continuously stratified fluids,
although their role in generating turbulence is far from clear. We study here a more
controlled case, excitation of a wave by a modulation of the apparent gravity, which
may shed some light on the mechanisms of instability of an internal wave into
secondary waves. In particular the intermittent behaviour over long timescales may be
of general relevance.

2. Experimental apparatus and procedure

The continuous stratification is produced by salt concentration in a Plexiglas water
tank (figure 1(a)) with a rectangular (nearly square) vertical section. The tank is
narrow, 9.6 cm wide¬26.1 cm long (filled with water to a height of 25 cm), to excite
mostly modes of internal waves in a vertical plane. The tank is slowly filled from the
bottom by water with increasing salt concentration, prepared by the computer
programmed displacement of pistons in two cylinders, one filled with pure water and
the other with concentrated salt, as sketched in figure 1(b). The salt is sodium nitrate,
which has the advantage of being highly soluble, with only a weak modification of
water viscosity (increase of the kinematics viscosity by 4% for a density 1.1). This
allows fairly high density differences (10%) to be produced, which is useful for
sustaining relatively high wave frequencies.

To study interfacial waves, we fill the tank with water (coloured with fluorescein) up
to half height (12.5 cm), and then add kerosene up to 25 cm. The density of water is
ρ
"
¯ 1.00 g m−" while the density of kerosene is ρ

#
¯ 0.79 g ml−". The respective

viscosities are ν
"
¯ 1.0¬10−' m# s−" and ν

#
¯ 1.6¬10−' m# s−".

The tank is mounted on a platform with an oscillating motion of vertical translation,
driven by a crank and a motor, as sketched in figure 1(a). The amplitude of oscillation
is mechanically adjusted by a screw on the crank (in the range 0–120 mm, with
precision 0.5 mm). The frequency of oscillation f

e
is set by the motor speed with a good

precision (better than 10−$), which is necessary to get a reproducible wave excitation.
A video camera is mounted on the platform to monitor the fluid motion in the
oscillating frame of reference.

The wave field in the continuously stratified case is visualized by the displacement of
dye bands. These are initially produced by periodic injection of fluorescein in the filling
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F 1. (a) Sketch of the experimental apparatus. The tank filled with stratified fluid is fixed onto
the oscillating platform. The motor drives the platform with a sinusoidal vertical motion through a
crank. The pressure in the piston balances the platform weight. The conductivity signal is recorded,
as well as peaks marking the high position of the platform (through an electrical contact). (b) Filling
system to prepare any vertical density profile with two computer programmed pistons, pushing pure
water (with density ρ

"
¯ 1 g ml−") and salt water (with density ρ

#
¯ 1.16 g ml−"), respectively, mixed

in a solution with a resulting density ρ ; dye in the reservoir T is periodically injected through an
electrovalve E to produce dye strips.
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brine entering the tank bottom, marking the fluid parcels with a given density. The
deformation of the resulting dye strips is visualized by the fluorescence excited by a
vertical laser sheet. The amplitude and phase of a simple primary wave (as shown in
figure 8) can be obtained by measuring the maximum vertical displacement of these
strips, using image processing. However, we are not able to quantitatively analyse more
complex wave fields by this method, and we use instead a conductivity probe.

Time series of the local density are obtained by this conductivity probe, which can
be positioned at different depths. It is a four-electrode probe (Precision Measurement,
model 5201), which has a spatial resolution 0.5 mm. The probe is used with the
associated electronic device from the same company. An a.c. current at 80 kHz is
introduced by two electrodes, and the corresponding potential difference measured by
two different electrodes to avoid the effect of contact resistance. The potential
difference is treated by a lockin amplifier (in the same box), leading to a relative
precision on conductivity of about 1%. The output signal from this electronic device
is introduced in a 16 bit A}D acquisition board, and processed in a PC computer. The
phase of the platform oscillating is recorded simultaneously with the probe signal, by
measuring the potential difference across an electric contact, closing a circuit (fed by
a DC power supply) when the platform is up; the signal of the platform displacement
cosω

e
t is then reconstructed.

We perform various processing operations on the signal. In particular we filter the
density signal ρ«(t) around the primary wave frequency "

#
ω
e
, extracting the oscillating

ρ
p
(t) in the primary wave component (we use a Blackman filter band pass 0.02 Hz). We

consider that this primary wave has a slowly varying amplitude A(t) and phase φ(t),
ρ
p
(t)¯A(t) cos ("

#
ω
e
tφ(t)). We experimentally determine these quantities by

A(t)¯©ρ
p
(t)#ª "/#,

cosφ(t)¯ 2©ρ
p
(t) cosω

e
t}2ª}©ρ«(t)#ª"/#,

sinφ(t)¯®2©ρ
p
(t) sinω

e
t}2ª}©ρ«(t)#ª"/#,

5

6

7

8

(2.1)

where ©[ª is a sliding average, calculated over a sufficient number of periods, but
shorter than the typical time for the instability evolution (we use a Blackman low-pass
filter with band pass 0.02 Hz).

During the growth of a simple primary wave, we compared this amplitude and phase
with the vertical displacement obtained from image analysis (we expect that
ρ«¯ ηd ρh }dz), where ρh (z) is the basic vertical density profile, initially prepared when the
tank is filled. We find an excellent agreement for amplitude, but we observe phase lags :
the wake of the probe itself generates an internal wave, which somewhat perturbs the
probe measurements.

3. The pendulum as a general model of parametric instability

To interpret our experimental results, it is first useful to consider a simple pendulum
with natural frequency ω¯ (g}l)"/#, whose suspension point vertically oscillates with
amplitude Z

!
and frequency ω

e
, so the apparent gravity is gZ

!
ω#
e
cosω

e
t. The angular

displacement ζ therefore satisfies

ζX 2Qζdω#[1F cos (ω
e
t)] sin ζ¯ 0, 3.1)

where the excitation parameter
F3Z

!
ω#
e
}g, (3.2)

has been introduced, as well as a friction coefficient Q.
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F 2. The mechanism of parametric instability illustrated by a sketch of a pendulum at
successive phases with the corresponding modulation δg of the apparent gravity (the extremal
positions of the pendulum are indicated by dashed lines and its velocity by the arrow). The apparent
gravity is stronger than average when the pendulum moves downward and is weaker than average
when the pendulum moves upward. This is possible when the excitation period is half T, the natural
period of the pendulum.

The instability mechanism is easily understood by the following arguments. When
the pendulum moves downward, the apparent gravity (in the reference frame of the
suspension point) is higher than average, as shown in figure 2 (t¯ 0). Therefore, it is
pushed downward more strongly. When the pendulum moves upward (figure 2,
t¯ "

%
T ), the apparent gravity is lower than average. The oscillation is globally amplified

by this mechanism, which is possible when the gravity oscillates by one period during
half a pendulum period, i.e. ω

e
E 2ω, as shown in figure 2 (there are other frequencies

of instability, with ω
e
}ω¯ 2}n, for any integer n, but with much higher thresholds, so we

do not consider them). Furthermore, appropriate phase relationship must be satisfied
between the excitation and the pendulum oscillation. This condition can be precisely
stated by averaging the equation for energy (obtained by multiplying (3.1) by ζd ) over
one period. Introducing the slowly varying complex amplitude A(t)¯ rAr(t) exp (iφ(t))
by

ζ(t)¯Re [A(t) exp (iω
e
t}2)], (3.3)

we then get the growth rate

d rAr}rArdt¯ s sin (2φ)®Q, with s¯ω
e
F}8. (3.4)

The growth is maximum for φ¯ "

%
π, and a maximal decay occurs for φ¯®"

%
π.

The phase is obtained by a redefined analysis, using a multiscale expansion (e.g.
Nayfeh 1973)

dφ

ωdt
¯∆"

%
F cos 2φ®"

%
rAr#, (3.5)

where ∆¯ω®"

#
ω
e
is the frequency misfit. Instability is then shown to occur within an

instability tongue in the parameter space (ω
e
,F ), defined by the range (represented in

figure 5)
®(s#®Q#)"/#!∆! (s#®Q#)"/#. (3.6)

The tongue extremity is the minimum instability threshold s¯Q, occurring with
∆¯ 0. At sufficiently large forcing (far from the tip), the width of the tongue given by
(3.6) is just 2s¯ "

%
Fω

e
.

For a harmonic oscillator, the exponential growth would persist without bound.
However, for a pendulum, the period increases with amplitude, corresponding to the
phase shift indicated by the last term in (3.5). The resulting growth rate (3.4) is reduced
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F 3. Numerical solution of the amplitude equation (3.7). Amplitude and phase φ versus time
(left-hand side), and trajectories in the phase space (right-hand side). The reduced complex amplitude
A«¯ (ω}4s)"/#A is represented. The excitation is exactly at the frequency of the parametric resonance
(∆¯ 0). (a) No dissipation Q}s¯ 0. A periodic modulation of the amplitude is obtained. After an
exponential growth with phase φ¯ "

%
π, the nonlinear effects produce a phase shift resulting in a decay

with phase φ¯®"

%
π. The period of modulation depends on the initial perturbation. The phase space

trajectory seen on the right-hand side is a homoclinic cycle corresponding to the unstable fixed point
(A

r
, A

i
)¯ (0, 0). (b) Q}s¯ 0.69. The amplitude modulation is damped and a stable fixed point with

a permanent oscillation amplitude is reached.

until saturation occurs. The two evolution equations (3.4) and (3.5) can be combined
into an equation for the complex amplitude A

A~ ¯ (®Qi∆)AisA{®i"
%
ωA{A#. (3.7)

The form of this equation can be deduced from general symmetry arguments (Thual,
Douady & Fauve 1989), so we expect it to describe many other cases of parametric
instability, for instance with surface and internal waves.

Typical (numerical) solutions of (3.7) are plotted in figure 3. Inside the instability
tongue (3.6), the system (3.7) tends to the stable fixed point

rAr#¯
4

ω
(∆(s#®Q#)"/# )

1

2

3

4

sin(2φ)¯Q}s

cos(2φ )" 0

5

6

7

8

, (3.8)

which determines the phase and amplitude of the permanent oscillation (there are in
fact two possible phases, differing by π). For a small dissipation parameter Q}s,
amplitude and phase oscillate before reaching this permanent regime (see figure 3(a)),
but this oscillation is damped as the dissipation Q}s is close to 1 (figure 3(b)).
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When ∆ is progressively increased from negative values, so that the instability tongue
is crossed with decreasing excitation frequency, the permanent regime amplitude
progressively increases from the threshold ∆¯®(s#®Q#)"/# : the tongue edge with
negative ∆ corresponds to a supercritical bifurcation. For ∆" (s#®Q#)"/#, the
amplitude still grows, but this solution coexists with the state of rest, which is also
stable. If by contrast the instability tongue is crossed with increasing frequency,
instability appears for δ¯ (s#®Q#)"/#, and the system directly reaches the amplitude
(3.8), so that hysteresis is expected; the tongue edge with positive ∆ corresponds to a
subcritical bifurcation.

When several coupled oscillators are present, their instability tongues can overlap.
The amplitude equation is then more complex than (3.7), involving coupling between
the amplitudes of the different oscillators (see Meron 1987).

The oscillations of a confined continuous media can be generally analysed as a set
of eigenmodes. Each of these eigenmodes behaves as an oscillator and can be
parametrically excited like a pendulum. If the frequencies of these eigenmodes are well
separated (and not in rational ratio), their interactions can be neglected in the weakly
nonlinear regime. Each mode interacts with its harmonics, resulting in a change to its
natural frequency, and a saturation of the parametric instability, as for the pendulum.
The normal form (3.7) is obtained and justified from general symmetry of the
parametric instability (Thual et al. 1989). The determination of the coefficients from
fluid dynamics depends on the particular problem.

The case of surface waves has been treated by Miles (1984), and the case of waves
at the interface between two deep fluids by Sekerzh-Zen’kovich (1983a). The result of
Sekerzh-Zen’kovich (1983a) can be identified with (3.7) by the following cor-
respondence between the amplitude rAr and the maximum vertical interface
displacement η

m
, scaled by the wavelength λ,

rAr¯o2π
(ρ#

"
ρ#

#
)"/#

ρ
"
ρ

#

η
m

λ
. (3.9)

In particular, the wave frequency decreases with amplitude as in a pendulum.
For the continuously stratified case (with the Boussinesq approximation) Sekerzh-

Zen’kovich (1983b) similarly found results leading to the following correspondence:

rAr¯
q
z
η
m

o8
¯

πη
m

o2λ
z

, (3.10)

where η
m

is the maximum vertical particle displacement with respect to their positions
at rest, and λ

z
¯ 2π}q

z
the wavelength in the vertical direction. An isolated mode is

assumed to grow at leading order, which is not truly justified owing to the overlap of
the instability tongues, but has the advantage of yielding again the pendulum equation
(3.7) for the equivalent amplitude (3.10).

4. Parametric instability of interfacial waves

At certain frequencies of the oscillating platform, we observe the formation of
standing waves of considerable amplitude at the liquid interface. The frequency of
these internal waves is found to be half the excitation frequency f

e
, as expected for

parametric instability. Note that the (upper) free surface remains unperturbed in the
frequency range that we explore.
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F 4. Amplitude η
m

of the interfacial wave versus time (mode n¯ 1), obtained as the successive
elevation maxima of the interface, measured on video records (the precision is about 0.5 mm). (a)
Growth at excitation frequency 1.108 Hz (∆E 0), with amplitude Z

!
¯ 3.5 cm, beginning at t¯ 0.

The theoretical growth exp (s®Q) t is indicated by the straight line (s¯ 0.150 s−" is given by (3.4) and
Q¯ 0.046 s−" from the measured decay, see (b)). (b) Decay after turning off the excitation, by
stopping the motor of the oscillating platform (the time origin of the graph is arbitrary) ; the best fit
by an exponential, exp(®Qt) with Q¯ 0.046 s−", is represented by the straight line.

We restrict the theoretical description to interfacial waves with fairly large
wavelength (" 10 cm), so that various effects are limited to thin boundary layers.
Therefore we first consider the inviscid modes, containing integer numbers (n, m) of
half wavelengths over the length L and width W of the tank, respectively. For
simplicity, we choose to select one of the first two-dimensional modes (n¯ 1 or 2,
m¯ 0), by an appropriate choice of the range of the excitation frequency f

e
. The total

fluid height is denoted by H, while each fluid layer has the same depth "

#
H. In the case

of the narrow tank that we use here, three-dimensional modes have a well separated
frequency and are not excited. The natural frequency is then given by the textbook
formula (e.g. Lamb 1932, §231),

ω(q)#¯
qth("

#
qH )

(ρ
"
ρ

#
)
[(ρ

"
®ρ

#
) gγq#], q¯

nπ

L
, (4.1)

In fact, we are close to a condition of deep water th("
#
qH)E 1. We have estimated the

coefficient of surface tension γ¯ 20¬10−$ J m−# from observations of the meniscus.
The corresponding correction on frequency is 0.07% for n¯ 1, and 0.3% for n¯ 2,
and we shall neglect it.
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Mode number n 1 2

Q
calc

(s−") 3.1¬10−# 4.2¬10−#

Q (s−") 4.6¬10−# 7.3¬10−#

T 1. Decay rate Q
calc

for interfacial waves calculated from (4.2)
compared to the measured rate Q.

The influence of the small viscous effects can be calculated by a boundary-layer
approximation. Harrison (1908) has shown that a viscous reduction of frequency
∆ωE ("

#
ων)"/# "

#
| should occur (see also Thorpe 1968). This reduction is only 0.2% for

n¯ 1, and 0.3% for n¯ 2, so we neglect it. The main effect of viscosity is a wave
damping that we obtain by a boundary-layer approximation (e.g. Lamb 1932, §329).
We calculate the laminar boundary-layer structure at the solid walls, matched with the
inviscid solution in the bulk. The energy dissipated over one wave period in these
boundary layers is then calculated, and the rate of energy decay is obtained by dividing
this dissipation by the total wave energy. The corresponding decay rate Q

bound
for

amplitude is then half this energy decay rate. Another contribution Q
inter

to the decay
rate is similarly introduced by the boundary layer occurring at the interface between
the two fluids. The total decay rate is then Q

calc
¯Q

bound
Q

inter
(there is also a

contribution by shear effects in the bulk, but it is quite negligible in our case). We find

Q
bound

¯
ρ
"
("
#
ων

"
)"/#ρ

#
("
#
ων

#
)"/#

ρ
"
ρ

#

9 q

sh qH 01®
H

L1
1

W


1

L: ,
Q

inter
¯ 0 ρ

"
("
#
ων

"
)"/#

[1(ρ
"
}ρ

#
) (ν

"
}ν

#
)"/#]#


ρ
#
("
#
ων

#
)"/#

[1(ρ
#
}ρ

"
) (ν

#
}ν

"
)"/#]#1

4q cosh#("
#
qH )

(ρ
"
ρ

#
) sinh qH

.

5

6

7

8

(4.2)

In the limit of deep water qHj 1, and for ρ
"
E ρ

#
, ν

"
¯ ν

#
3 ν, (4.2) reduces to the

approximation Q
calc

E ("
#
ων)"/# (1}W1}L"

#
k) used by Thorpe (1968).

We have compared the result (4.2) with the measured rate of free decay of the wave.
For that purpose we run the experiment with appropriate conditions for wave
excitation by parametric instability (see below), and stop the tank motion before the
wave has grown to a large amplitude. We then obtain the decay rate by measuring on
a video record the maximum vertical displacement at each wave period, as shown in
figure 4(b). The measured dissipation rates Q appear to be significantly stronger than
theory, see table 1. The discrepancy increases with mode number, and may be
associated with hysteresis in wetting effects on the wall, as discussed by Miles (1967)
for surface waves.

In order to study the parametric instability, experiments with different excitation
frequency f

e
and amplitude Z

!
are performed. In practice, we manually set an

amplitude Z
!
, turn on the driving motor at a low frequency, and then increase the

frequency, by small steps (0.5¬10−# Hz) when approaching the instability tongue of
the mode under study. We thus move along a line in the ( f

e
, F ) space, as marked by

dots and crosses in figure 5. We draw a dot when instability is not observed (after a
waiting time about 20 min), and a cross when instability grows, so that the left-hand
side of the instability tongue is detected. To obtain the right-hand side of the tongues,
we set a higher exciting frequency well beyond the instability tongue, and progressively
decrease this frequency. The observed tongue is centred around a frequency very close
to the theoretical one (4.1), although slightly higher (1 or 2%). The width of the tongue
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F 5. Instability diagram for the interfacial modes n¯ 1 (left) and n¯ 2 (right). The excitation
frequency f

e
is in the abscissa and the forcing parameter F in the ordinates. The sign () denotes an

observed instability, the sign (\) the absence of instability. The theoretical instability tongues (in the
absence of dissipation) are given by the solid lines. The theoretical threshold amplitudes, resulting
from the boundary-layer approximation (4.2) are represented by F1, and the threshold calculated
from the measured decay rate Q is indicated by F2. The arrows indicate the path followed in
figure 6.

is also in good agreement with theory, although some fluctuations in the threshold
position are observed.

While the position and width (at large enough F ) of the instability tongue depend
only on the natural frequency of the mode, the ordinate of the tip is proportional to
the friction rate, corresponding to s¯Q from (3.6). The experimental threshold is
higher than this prediction obtained from the theoretical friction Q

calc
, labelled as F1.

The observed threshold is, however, in good agreement with the value s¯Q predicted
from the measured friction, labelled as F2 in figure 5.

We have checked also the growth rate of the instability. A typical result is
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F 6. Amplitude η
m

of the mode n¯ 1 in the permanent regime (interfacial wave) as a function
of the frequency misfit ∆, following the path shown in figure 5 (variation of the excitation frequency
for a fixed amplitude Z

!
¯ 3.5 cm). The wave amplitude displays hysteresis according to the path

indicated by the arrows, *, decreasing excitation frequency (i.e. increasing ∆), ^, increasing
frequency. The theoretical amplitude, obtained from (3.8) and (3.9), is indicated by solid lines
(calculated for Q¯ 0, but dissipation would change it only by a few per cent).

represented in figure 4(a), showing the amplitude versus time, obtained from a video
record. We have compared the results with the growth rate predicted by (3.4), using the
friction Q measured from the free decay of figure 4(b), and the optimal phase φ¯ "

%
π

(corresponding to the fastest growing instability). The agreement with theory is good
only at moderate amplitude. At low amplitude, we observe a smaller growth rate (but
the amplitude is then close to the experimental precision 0.5 mm). At high amplitude,
the instability saturates by nonlinear effects, in a way similar to the case of a damped
pendulum, shown by the solid curve on the left-hand side of figure 3(b).

The amplitude measured in the permanent regime resulting from the instability has
been compared with the theoretical result (3.8) for the equivalent amplitude rAr given
by (3.9). In figure 6, this amplitude is represented versus the frequency misfit ∆ for a
given forcing amplitude Z

!
(along the line marked by arrows in figure 5). The

amplitude appears to be lower than the predicted one, probably because of nonlinear
dissipation effects. However, the general behaviour is qualitatively in agreement with
the nonlinear theory; the transition is supercritical for negative ∆, and subcritical for
positive ∆. The hysteresis for positive ∆ is clearly observed in figure 6 by comparison
between the results for increasing and decreasing frequencies (as indicated by arrows).

A form of nonlinear dissipation is the excitation of ripples at the interface, and even
foam at large amplitude, that we observe in the central zone, with maximum shear.
This can be simply explained as a consequence of shear instability, owing to
the velocity difference U

"
®U

#
across the fluid interface. Instability is expected for

(U
"
®U

#
)#" 2 (1}ρ

"
1}ρ

#
) [gγ(ρ

"
®ρ

#
)]"/# (see e.g. Lamb 1932, §268). This threshold

corresponds to U
"
®U

#
¯ 11 cm s−" in our experiments. The maximum velocity

difference is related to the amplitude η
m

of the vertical interface displacement by
U
"
®U

#
¯ 2ωη

m
(for a deep-water wave). In the case of the mode n¯ 1, with natural

frequency ω¯ 3.55 s−", this yields a threshold amplitude η
m

¯ 1.6 cm for the onset of
the secondary instability, inducing nonlinear dissipative effects for the primary mode.

As already mentioned, our results with interfacial waves are similar to the ones by
Kalinichenko (1986), also performed with a kerosene–water interface. He found
instability tongues at a frequency of 4–5% lower than theory, unlike ours, which may
be due to his narrower tank (horizontal cross-section 40¬500 mm#). By contrast with
our results, he found a free wave decay and instability threshold in good agreement
with the prediction (4.2). Again, the difference may be due to his narrower geometry,
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in which the interfacial friction is dominated by friction over the vertical walls. While
(4.2) is appropriate for usual boundary-layer friction, the interfacial friction is
probably more complex owing to some capillary effects. As in our experiments, the
nonlinear behaviour is qualitatively in agreement with theory, but with a lower
amplitude for the instability saturation, suggesting the presence of nonlinear dissipative
effects.

5. Parametric instability for the continuous stratification

5.1. The linear modes

In a continuously stratified fluid, prepared with a density profile at rest ρh (z) (decreasing
with altitude z), a vertically displaced fluid particle receives a restoring force, leading
to oscillation at the Brunt–Va$ isa$ la$ frequency N,

N¯ 0®g

ρh
dρ

dz1
"/#

. (5.1)

The eigenmodes of oscillation have a simple explicit expression in the case of a uniform
value of N, obtained for an exponential density profile ρh ¯ ρ

S
exp(®z}H «). We can

then calculate the oscillation modes by linearizing the inviscid fluid equations without
any other approximation. In the case of small density differences, i.e. H «jH, the
expressions simplify, and can be obtained by linearizing the Boussinesq equation. In
our experiments, we have chosen the parameter H «¯ 2.55 m, so that N¯ 1.96 s−". The
density difference between top and bottom is then 10%, so the Boussinesq
approximation is not excellent, and we have calculated the exact results for linear
modes with an exponential density profile.

The eigenmodes then have velocity components (u, �, w) and density fluctuation ρ«
of the form (see Turner 1979)

u¯®ηd (t)
q
x
q
z

q#
x
q#

y

sin q
x
x cos q

y
y 9cos q

z
z

sin q
z
z

2q
z
H «: exp

z

2H «
,

w¯®ηd (t) cos q
x
x cos q

y
y sin q

z
z exp

z

2H «
,

ρ«}ρh ¯ (N #}g) η(t) cos q
x
x cos q

y
y sin q

z
z exp

z

2H «
.

5

6

7

8

(5.2)

(The velocity component � along y is obtained by permuting x and y in the expression
of u.) The impermeability boundary conditions impose that the three components of
the wavenumber vector q are quantified

q
x
¯ nπ}L, q

y
¯mπ}W, q

z
¯ pπ}H. (5.3)

It will be useful to define the modulus q by q#¯ q#
x
q#

y
q#

z
, and the angle θ of the wave

number vector with the horizontal, such that sin θ¯ q
z
}q. The Boussinesq results are

obtained from the expressions (5.2) by suppressing all terms involving H «. The
standing modes are then expressed as a superposition of four propagating waves with
the same wavenumber q, and with the angles θ and ®θ with the horizontal.
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F 7. Amplitude of a continuously stratified mode (1, 0, 1) function of time, in lin-log
coordinates, showing the exponential amplification (excitation frequency 0.432 Hz and amplitude
Z

!
¯ 11 cm), followed by free exponential decay, after stopping the excitation. The amplitude is

extracted from the probe signal by the filtering (2.1).

Mode (1, 0, 1) (2, 0, 1) (4, 0, 2) (3, 0, 2)

Q
calc

(s−") 1.4¬10−# 1.0¬10−# 1.1¬10−# 1.25¬10−#

Q (s−") 2.6¬10−# 1.6¬10−# 1.4¬10−# 1.6¬10−#

Q
bulk

}Q
bound

(%) 1 4 16 8

T 2. Decay rate Q
calc

for modes with a uniform stratification, calculated from (5.5),
compared to the measured rate Q ; the ratio Q

bulk
}Q

bound
is also given.

The mode amplitude is characterized by the maximum vertical displacement η(t),
which oscillates with the natural frequency

ω¯N cos θ. (5.4)

This expression corresponds to the Boussinesq approximation, but the exact relation
for the exponential profile brings only a relative correction smaller than 0.3¬10−$ with
our experimental conditions.

5.2. Energy dissipation

Energy dissipation is the sum of a boundary-layer term Q
bound

and a bulk term Q
bulk

,
which is generally much smaller (of course there is no interfacial dissipation). The
boundary layers for the horizontal velocity have the same structure as in a fluid with
uniform density, but the boundary layers for the vertical velocity are directly influenced
by buoyancy effects, and are calculated by McEwan (1971). The resulting dissipation
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coefficients are obtained as a direct generalization of McEwan’s results (including
three-dimensional and non-Boussinesq effects),

Q
bulk

¯ "

#
νq#,

Q
bound

¯ (ων}2)"/# sin# θ ((2®δ(q
x
))

cot θq#
y
}q#

h

L
(2®δ(q

y
))

cot θq#
x
}q#

h

W

s
sin# θ

H 01®
H

2H «1* ,

5

6

7

8

(5.5)

where δ(q)¯ 1 if q¯ 0 and δ(q)¯ 0 if q1 0, s¯ 1 when the upper surface is free, and
s¯ 2 when it is rigid. Even when we have a free surface, its tangential motion is
generally frozen by a thin film of impurities, so we always choose s¯ 2 (dissipation is
dominated by the vertical lateral walls, so this choice is not essential). The term q

h

denotes the modulus of the horizontal wave number projection, defined by q#
h
¯

q#
x
q#

y
. We have approximated the small non-Boussinesq correction to the lowest

order (by the term in H}H «). Note that the boundary dissipation Q
bound

depends only
on the direction of the wavenumber vector, not its modulus. For the two-dimensional
modes that we are studying here (q

y
¯ 0), Q

bound
depends only on the angle θ, like

frequency. By contrast, the bulk dissipation Q
bulk

depends on the wavelength, but it is
much smaller than Q

bound
for the typical waves that we excite. Some dissipation of

potential energy by diffusion of concentration is also expected, but this is negligible
here owing to the low salt diffusivity in comparison with viscosity.

We have experimentally checked the dissipation rate (5.5) in the free decay of
different modes. We characterize this decay by the amplitude of the probe signal,
extracting the envelope of the oscillation by the filtering procedure (2.1). We first excite
the mode by parametric instability, and stop the forcing to observe the free decay, as
shown in figure 7. The measured decay rate is of the correct order of magnitude, but
always faster than the theoretical prediction, as shown in table 2. McEwan (1971) made
similar comparisons for decaying waves initially generated by a wavemaker, and found
a better agreement with (5.5). We do not have a clear explanation for the greater
discrepancy in our experiment. We notice that in our case, the boundary layers
involving a vertical velocity play a dominant role in the dissipation, in contrast to
McEwan’s experiments. This boundary layer produces steep horizontal density
gradients near the walls, and should be unstable even for a small wave amplitude,
according to Robinson & McEwan (1975).

Indeed, these authors experimentally found that the boundary layer near a vertically
oscillating wall with velocity amplitude w is unstable for w" 7 (2ων)"/#, in the range
0.7!ω}N! 1 corresponding to our experiments. This threshold velocity is w¯
1.2 cm s−" in our experiments, and is achieved for an amplitude of vertical displacement
η
m

¯w}ω¯ 0.85 cm. In practice, this value is attained in most of our experimental
runs (for instance in figure 7), so we expect discrepancies with the laminar wall friction
law. Notice that in a non-stratified fluid, the instability threshold is much higher, wE
250 (2ων)"/#¯ 43 cm s−", and we expect this threshold to be valid also in the stratified
case for boundary layers with horizontal velocity.

5.3. Parametric instability

As in the interfacial case, we always excite modes with a natural frequency of half the
frequency of the platform. However, the modes are not isolated; whatever the
excitation frequency (for ω

e
! 2N ), we excite some mode for a sufficiently high forcing.
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F 8. Instability diagram in the continuously stratified case, indicating parameters for which
different modes (n, 0, n) have been observed, as specified by the labels. The different harmonics
(visualized in figure 9) can be excited in an intricate way for the same experimental parameters. The
theoretical inviscid instability tongue, common to all these modes, is indicated by the solid line, as
well as the threshold F2 (obtained with the measured decay rate Q¯ 2.6¬10−# s−"). We have limited
the exploration to ∆E 0, otherwise different modes appear in a non-reproducible way, so the
experimental edge of the instability tongue is not well defined.

This is easily understood from the dispersion relation (5.4) ; for any frequency ω
e
! 2N,

the wavevectors with angle θ¯ arccos (ω
e
}2N ) can be excited. The possible values of

θ are constrained by the quantization condition (5.3), but this restriction is not severe
for high wavenumbers, and in practice one or several modes, two-dimensional or three-
dimensional, can be excited for any excitation frequency ω

e
! 2N. For ω

e
" 2N¯

3.9 s−", we do not observe any internal wave excitation, as expected. For the much
higher frequency ω

e
¯ 2 (gπ}L)"/#¯ 21.8 s−", we excite the first free-surface mode. By

contrast the free surface remains unperturbed in the range of internal wave excitation
ω
e
! 2N in which we are interested here.
The tongues of parametric instability for the different modes intersect in an intricate

way, and it is not possible to study isolated tongues as in the interfacial case (as in
figure 5). In practice, the selection of a mode is very sensitive to the frequency and
amplitude of forcing, and even sometimes to the initial perturbation. Three-
dimensional modes are commonly obtained, and are often in competition with a two-
dimensional mode, as we move away from the centre of its instability tongue. The
outcome of various experiments is given in figure 8, for the excitation frequency of the
fundamental mode (1, 0, 1), and its different harmonics (n, 0, n), which have the same
frequency N}o2. As we move away from the tongue centre (i.e. ∆1 0), other modes
dominate, in a non-reproducible way (depending on initial disturbances), and we were
not able to explore the lateral limits of the instability tongue. Visualizations of the
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(a)
(b)

(c) (d)

F 9. Different modes obtained for the same experimental parameters f
e
¯ 0.432 Hz and

amplitude Z¯ 10.5 cm. The views are taken during the growth of the primary instability and the
deformation fields are smooth (but some dye bands have been initially perturbed or broken by air
bubbles as the tank was filled). (a) mode (1, 0, 1), (b) mode (2, 0, 2), (c) mode (4, 0, 4), (d )
superposition of (2, 0, 2) and (4, 0, 4).

different harmonics are represented in figure 9. We can also observe a superposition of
two modes as in figure 9(d ). As stated in §5.2, energy dissipation is dominated by the
boundary effect Q

bound
, which is the same for all the harmonics (n, 0, n). Therefore we

expect that the threshold of instability is also the same for the first harmonics, and this
is in agreement with observations. However, this common threshold is somewhat
higher than the theoretical prediction, represented by the horizontal line in figure 8.

To expand this point, we have measured the growth rate of the parametric instability
(figure 10(a)), and compare it with the prediction s®Q, with Q given by (5.5),
represented by the solid line. The growth rate is lower than theory, consistently with
the stronger decay of the free mode. The growth rate is, however, higher than the
prediction for instability using the measured decay rate (dashed line). We think these
effects are due to changes of the wall friction associated with perturbations of the
boundary layers along the vertical walls, and further studies would be needed to clarify
these effects.

5.4. Nonlinear beha�iour of the parametric instability

We can predict the saturation amplitude, combining (3.10) and (3.8), with a misfit
∆¯ 0 (indeed we only observe growth at the centre of the instability tongues). This
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F 10. (a) Growth rate of the mode (1, 0, 1) versus the forcing parameter F. The experimental
points are between the solid and dashed theoretical lines, respectively, obtained with the theoretical
decay rate (5.5), and with the decay rate Q¯ 2.63¬10−# s−" measured in figure 7. (b) Maximal
amplitude reached by the growing mode (1, 0, 1) compared with the two theoretical estimates as in
(a). D, pure oscillation, _, presence of the subharmonic perturbation. The points labelled a and b
correspond to the signals shown in figure 11.

saturation amplitude, supposedly obtained at large times, is close to the maximum
amplitude of the wave reached at the end of its growth, as shown by the solid line in
the left side of figure 3(b). In figure 10(b), we compare this prediction (solid line) with
the maximum amplitude measured in the experiment. For forcing close to the
threshold, the maximum amplitude is lower than predicted, and this reflects the lower
growth rate shown in figure 10(a). The saturation amplitude predicted by introducing
the measured decay rate Q in (3.8) is by contrast too low (dashed line), and this is also
consistent with the results on the growth rates. For larger forcing, the maximum
amplitude becomes higher than theoretical predictions, pointing out limitations of the
weakly nonlinear single mode model leading to (3.10).

Very close to the instability threshold (open circles in figure 10), the primary wave
slowly grows and saturates in a steady regime, as expected from the model of an
isolated mode. This results in a periodic signal, as shown in figure 11(a). In generic
instability problems, the linearly unstable modes interact together in the weakly
nonlinear regime appearing slightly beyond the instability threshold. Therefore we
would expect in our case an interaction between the different harmonics (n, 0, n).
Depending on the coupling constants, such interactions lead to steady regimes,
involving either an isolated instability mode, or a superposition of them, or lead to
time-dependent regimes. Our results indicate that the excited modes tend to remain
separate, which would correspond to the first possibility. Notice, however, that internal
waves interact efficiently only when they form a resonant triad, involving three modes
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F 11. Probe signal showing the saturation of the primary instability, for mode (1, 0, 1) (the
probe is at height z¯ 0.45 H, at a distance x¯ "

&
L from the wall). (a) Saturation into a permanent

oscillation, very close to the threshold, corresponding to label a in figure 10(b). (b) Growth of a
subharmonic secondary instability, seen as a modulation of the oscillation, for a higher primary wave
amplitude (label (b) in figure 10(b)).

with respective wavevectors k
"
, k

#
, k

$
satisfying k

$
¯k

"
³k

#
and frequencies ω

"
, ω

#
, ω

$
satisfying ω

$
¯ω

"
³ω

#
. The latter condition cannot be satisfied for three waves excited

by the primary instability, as they have the same frequency "

#
ω
e
. Therefore, the

interaction between the different primary waves is very weak near their instability
threshold.

The regime of an isolated standing wave is obtained only very close to the instability
threshold. When the primary wave exceeds the amplitude ηE 2 cm (triangles in figure
10), a secondary instability appears : a secondary wave grows with half the frequency
of the primary wave. The growth of this subharmonic perturbation can be seen directly
as a modulation of the primary oscillation in the probe signal of figure 11(b). In the
next section we analyse the structure of this secondary instability, as well as the
subsequent dynamics.
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6. Secondary instability and turbulent behaviour in the continuously
stratified case

6.1. Secondary instability and wa�e-breaking

The spatial structure of the secondary instability is visualized in figure 12(b). It is a
plane wave packet developing at the node (in displacement) of the primary wave. This
instability has been theoretically investigated from two points of view. According to
McEwan & Robinson (1975), the secondary wave is transported by the primary wave
oscillation, resulting in a modulation of its wave-vector angle with respect to the
horizontal, and a corresponding modulation of its natural frequency (5.4), leading to
parametric instability. The same parametric instability can be also viewed as a
particular case of resonant wave interaction among a triad made of the primary wave
and two secondary waves (McEwan 1971). The maximum growth rate is obtained in
the limit of large secondary wavenumbers (in the absence of viscosity), with a frequency
of half the primary wave frequency.

Bouruet-Aubertot et al. (1995) have shown by direct numerical computations that
this mechanism of parametric instability indeed initiates the instability of a standing
wave (with sufficiently high frequency). A remarkable spatial organization into a wave
packet was shown, very similar to the experimental observation of figure 12(b). The
phase of the secondary wave is locked with respect to the primary wave, corresponding
to an optimal amplification by parametric instability (figure 4 of Bouruet-Aubertot et
al. (1995). The same phase locking is observed in the laboratory experiments.

The growth rate of the secondary instability was found to be in good numerical
agreement with the theory of resonant interactions. For the primary wave (1, 0, 1), the
predicted growth rate, from equation (5.14) of Bouruet-Aubertot et al. (1995), is s

q
¯

0.098 k#
x
a, where k

x
is the wavenumber along the horizontal direction, and a the

primary wave amplitude in stream function. This amplitude is related to the vertical
displacement η

m
by a¯ωη

m
}k

x
, so that s

q
¯ 0.098 k

x
η
m

ω. Taking k
x
¯π}L¯

0.12 cm−", and ω¯ 1.36 s−", this yields an inviscid growth rate s
q
¯ 0.43 η

m
}L. The

wavenumber of the perturbation is about qE 2 cm−", and the friction, calculated from
(5.5), is 3.3¬10−# s−". Equating this rate with s

q
yields a threshold η

m
¯ 1.9 cm, in

reasonable agreement with our observations reported in figure 10. In most of our
experiments, the primary wave exceeds this amplitude, and the secondary instability is
indeed observed.

The secondary wave packet has a structure close to a plane wave, for which
nonlinear effects vanish, whatever the amplitude. As a consequence, there is no
saturation of the secondary instability, until local density overturning occurs, and new
instabilities rapidly lead to the onset of turbulence. The presence of a strong shear and
unstable vertical density gradient both foster these instabilities. Visualizations in the
plane of the primary wave show typical structures of shear instability (figure 12(c), left-
hand side), while rolls or mushrooms are detected in the transverse plane (figure 12(c),
right-hand side).

These observations are consistent with a Floquet stability analysis for infinitesimal
perturbations on a plane wave (Klostermeyer 1991). A plane wave with moderate
amplitude is found to be unstable by parametric instability, corresponding to resonant
interaction within a wavenumber triad in the vertical plane, and this is analogous to
our result for the instability of the standing wave. By contrast, three-dimensional
modes are found to be the most unstable when the wave amplitude is so large that
density overturning occurs, and this is the case for our secondary wave. Notice that the
observed organization of the instability into transverse rolls is commonly observed in
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F 12. Visualization of the wave breaking, face view (left), and side view (right) with the laser
sheet turned by 90°, along the lines AA« (excitation frequency 0.432 Hz and amplitude Z

!
¯ 11 cm).

The time elapsed from the beginning of the experiment is indicated for the side view. (The
correspondence with the face view is only approximate, as it corresponds to a different experimental
run.) (a) The growing primary mode (1, 0, 1). (b) A secondary wave packet growing by parametric
instability. In the side view a dye strip is doubled by overturning, and a convective instability begins
to grow in the region of overturning (arrow). (c) The wave has broken into a small-scale instability,
and the development of convective mushrooms is visible on the side view.
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F 13. Long time record of the probe signal (successive pieces), showing intermittent and regular
phases. The observed spatial structures are indicated by their wavenumber vectors (n, m, p).
Amplitude of excitation Z
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¯ 4.5 cm, frequency f

e
¯ 0.560 Hz, probe position z¯ 0.45 H, x¯ "

#
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the presence of shear and}or convective instability. It has been carefully analysed by
Schowalter, Van Atta and Lasheras (1994) in the case of a stratified shear layer.

6.2. Intermittent regimes

The development of the secondary instability and breaking reacts on the primary wave,
whose amplitude decays, until a new growth is observed, leading to a remarkable
intermittent behaviour, see figure 13. Different harmonics (n, 0, n) with the same
natural frequency often grow alternatively. Phases of well-established, although
chaotic, wave amplitude are also observed, so that the intermittence is intermittent.
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F 14. Primary wave amplitude A (dashed line) and phase φ versus time, obtained from the
probe signal by (2.1). We have represented sin 2φ (solid line), which represents the energy input
by the forcing, according to (3.4). The phase is interrupted when the amplitude is too small ( "
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of its maximum) to obtain a reliable result. We observe that the primary wave is growing when
sin (2φ)" 0 and decreasing when sin (2φ)! 0, in agreement with (3.4) (mode (2, 0, 1), f
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¯ 0.560 Hz,
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¯ 4 cm, probe position z¯ 0.45H, x¯ "
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L).

Flow visualization indicates that intermittence corresponds to a global change of the
wave amplitude, and is not limited to the probe signal at a given position. Notice that
the changes of modes are not due to a change of natural frequencies, associated with
a progressive mixing of the basic density profile by wave breaking. This mixing is very
slow, and the basic density profile remains within 1% during a full working day. We
see in figure 13 that the same sequence, for instance the growth of the pure (2, 0, 1)
mode occurs again at the same excitation frequency after several hours.

Although this complex nonlinear behaviour is clearly outside the scope of a single
oscillator model, it is reminiscent of the model (3.7) with a small relative dissipation
Q}s (figure 2(a)). As the wave amplitude increases, the wave oscillation lags, and the
phase φ corresponds to a negative forcing and wave decay, until a new growth occurs,
and so on in a cyclic way. However, this modulation of the amplitude is damped by the
dissipation (as in figure 2(b)), and should disappear as we are close to the threshold Q}s
E 1. It seems that mode interactions excite this amplitude modulation against viscous
damping. This interpretation is confirmed by time series of the primary wave amplitude
A(t) and phase φ(t), obtained by (2.1), represented, respectively, by a dashed line and
a solid line in figure 14. We have plotted sin 2φ, directly related to the energy input by
(3.4). We observe that sin 2φ is predominantly positive during phases of growth,
corresponding to energy input, and negative during decay, corresponding to a negative
forcing. (Notice that the phase φ obtained from the probe is perturbed by the probe
wake, as indicated in §2 (we should have sin 2φ¯ 1 during the initial growth).
However, it still proves a good indication for the sign of sin 2φ, as shown by
comparison with image analysis during the initial growth of the primary wave.)
Therefore, the secondary instability influences the primary wave both by draining its
energy and by changing its phase, both effects favouring the observed intermittent
behaviour.

Further characterization of the intermittent behaviour is provided by spectral
analysis (figure 15). The time spectrum is dominated by the primary wave frequency
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and its harmonics, as well as other secondary peaks, and a continuous background. We
have filtered the signal around these different frequencies. The first harmonics follows
the primary wave. It behaves like the square of the primary wave amplitude. By
contrast, other frequencies are mainly excited during breaking of the primary wave, i.e.
when its amplitude decreases. The secondary peaks, other than harmonics, must be
excited by resonant interaction with the primary wave. Although a subharmonic wave
is first excited, as discussed above, other frequencies appear later in time as some
disorder sets in the wave field. The selection of these secondary frequencies slowly
changes with time, and we cannot clearly characterize them. However, we observe that
they are always below the primary wave frequency. This is in agreement with a general
rule for a wave instability by resonant interaction. The growing perturbing waves must
have a frequency lower than the primary wave (Davis & Acrivos 1967; Hasselmann
1967).

A continuous spectrum at frequencies larger than N is also excited, mainly during
breaking. These frequencies are beyond the range of internal waves, and must be
interpreted as the result of the advection of fine scale structures. For sufficiently high
forcing, this continuous spectrum depends on frequency with a ω−$ law, as shown by
Benielli and Sommeria 1996). This result has been interpreted as a k−$ spatial spectrum
of compliant waves, transported across the fixed probe by the large-scale internal
waves.

7. Conclusions

We have investigated the parametric excitation of internal waves in two different
cases, with a density interface, and with a continuously stratified case. Our experiments
with a density interface basically reproduce previous work by Kalinichenko (1986), and
are presented here mostly as a reference case to compare with the new results obtained
in the continuously stratified case.

The interfacial waves behave like surface gravity waves. Modes are isolated and well
separated, so that each mode is like a pendulum, with amplitude specified by (3.9). The
instability occurs in tongues in the space (F,ω

e
), and grows until a steady regime is

obtained. The instability is subcritical on the left-hand side (low ω) and supercritical on
the right-hand side (high ω) of each tongue, in agreement with theory.

However, friction effects are not well understood. The friction is calculated using a
boundary-layer approximation, but the observed decay rate is about 50% higher than
expected from this calculation. Given this higher friction, the instability threshold and
the initial growth rate are in agreement with the theory of parametric instability. The
level of saturation in the permanent regime is lower than theory, even with the friction
deduced from wave decay. Nonlinear dissipative effects must therefore take place,
probably by excitation of capillary waves at the interface. We indeed observe the
development of ripples by shear instability, but hysteresis of wetting at the wall may
be a further source of energy dissipation. Kalinichenko (1986) found friction in better
agreement with theory, but a small discrepancy in the wave frequency. These
differences may be due to their smaller interfacial area in comparison with wall area,
as discussed in §4.

frequency intervals indicated by the labels in the spectrum (b). The signal is dominated by the primary
wave amplitude (i). Its harmonic (ii) behaves similarly. The lower-frequency component (iii) and the
high-frequency one (iv) burst during wave-breaking events, while the primary wave-amplitude
decays. This observation suggests an energy transfer from the primary wave to other modes during
breaking events.
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In the case of a uniform stratification, the instability tongues of different modes
strongly overlap, in contrast with the interfacial case. Indeed the harmonics (n, 0, n)
have the same frequency, and the same damping rate by viscous friction in the
boundary layer (dominating the dissipation), resulting in the same instability tongues.
Competition with three-dimensional modes is also observed. It was therefore not
possible to clearly identify instability tongues.

The different modes are excited at the expected frequency, but their damping is
stronger than predicted by (5.5), using the boundary-layer theory. By contrast,
McEwan (1971) found good agreement with the same theory. In our geometry,
boundary layers involving the vertical velocity component play a dominant role in
energy dissipation, in contrast to McEwan’s experiments. In contrast to the case of
horizontal velocity, these boundary layers induce steep horizontal density gradients,
which are the cause of specific instabilities, probably increasing friction. More
experiments on boundary-layer friction would be needed to clarify this point.

The instability threshold is higher than theory, but in good agreement when the
friction obtained from the decay rate is introduced in the theory of parametric
instability. Beyond the threshold, the growth is between these two predictions, which
would mean that friction decreases when the wave is growing in amplitude. The
saturation amplitude is also higher than the theoretical prediction using the observed
friction.

Although the instability tongues for the different harmonics (n, 0, n) are nearly
identical, we observe that each mode can grow with few interactions with each other.
Indeed, the coupling between these modes is weak, as they are not in resonant
interaction.

By contrast, secondary instabilities and breaking of the primary wave play an
essential role in the dynamics. The instability of the standing wave excites a well-
organized secondary wave packet in the vertical plane, with a frequency of half the
primary wave frequency. This secondary wave reaches high amplitude, with strong
shear and local density over-turning, and rapid three-dimensional instabilities lead to
the onset of turbulence. This mechanism of breaking was theoretically proposed by
McEwan (1971) and McEwan & Robinson (1975), and simulated by the two-
dimensional computations of Bouruet-Aubertot et al. (1995), but not clearly obtained
in previous laboratory experiments. The modes (1, 0, 1) and (2, 0, 1) that we have
investigated systematically break through this process. We did not study modes with
lower frequency (it would require a larger amplitude for the oscillating platform),
which develop other instabilities, as shown by the computations of Bouruet-Aubertot
et al. (1995) and the laboratory experiments of Taylor (1992) or Thorpe (1994).

The secondary instability and breaking react on the primary wave by decreasing its
energy, and changing its phase. Both effects contribute to a decay of the primary wave
after breaking, followed by a new phase of growth. This mechanism is reminiscent of
a parametrically excited pendulum (figure 3a), but it is here excited against friction
by the secondary instabilities. A remarkable intermittent behaviour over long
timescales results. We observe phases with a well-organized growing wave, and phases
with a more complex, decaying, field, including small-scale turbulence and low-
frequency modes excited by resonant wave interactions.

Our analysis may find applications for other kinds of waves, such as inertial waves
occurring in a rotating fluid. Inertial waves are excited by a form of parametric
instability in a vortex with uniform vorticity and elliptical streamlines (the oscillating
strain modulates the angle of the wave vector with respect to the axis of rotation, thus
modulating the natural frequency of the inertial wave). A laboratory experiment by
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Malkus (1989) indicates that this instability occurs in an intermittent way. This may be
due to the development of secondary instabilities initiated by resonant interactions, as
in our experiment.
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